Experimental Investigations into the Role of Passive Variable Compliant Legs for Dynamic Robot Locomotion

نویسندگان

  • Kevin C. Galloway
  • Jonathan E. Clark
  • Mark Yim
  • Daniel E. Koditschek
  • Haldun Komsuoglu
چکیده

Biomechanical studies suggest that animals’ abilities to tune their effective leg compliance in response to changing terrain conditions plays an important role in their agile, robust locomotion. However, despite growing interest in leg compliance within the robotics literature, little experimental work has been reported on tunable passive leg compliance in running machines. In this paper we present an empirical study into the role of leg compliance using a composite tunable leg design implemented on our dynamic hexapod, EduBot, with gaits optimized for running speed using a range of leg stiffnesses, on two different surface stiffnesses, and with two different payload configurations (0 kg and 0.91 kg). We found that leg stiffness, surface compliance, and payload had a significant impact on the robot’s final optimized speed and efficiency. These results document the value and efficacy of what we believe is the first autonomous dynamic legged robot capable of runtime leg stiffness adjustment. For more information: Kod*Lab

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Passive Variable Compliance for Dynamic Legged Robots

Recent developments in legged robotics have found that constant stiffness passive compliant legs are an effective mechanism for enabling dynamic locomotion. In spite of its success, one of the limitations of this approach is reduced adaptability. The final leg mechanism usually performs optimally for a small range of conditions such as the desired speed, payload, and terrain. For many situation...

متن کامل

Dynamic Modelling and Simulation of Four Legged Jumping Robot with Complaint Legs

Legged locomotion is used by most of the animals and human beings on the earth. Legged locomotion is preferred over the wheeled locomotion as it can be used for both flat and rough terrains. In this paper, an attempt has been made for the dynamic modelling and simulation of four legged jumping robots with compliant legs. Sagittal plane and bounding gait has been used. For energy saving passive ...

متن کامل

Design of a Multi-directional Variable Stiffness Leg for Dynamic Running

Recent developments in dynamic legged locomotion have focused on encoding a substantial component of leg intelligence into passive compliant mechanisms. One of the limitations of this approach is reduced adaptability: the final leg mechanism usually performs optimally for a small range of conditions (i.e. a certain robot weight, terrain, speed, gait, and so forth). For many situations in which ...

متن کامل

Design of a Tunable Stiffness Composite Leg for Dynamic Locomotion

Passively compliant legs have been instrumental in the development of dynamically running legged robots. Having properly tuned leg springs is essential for stable, robust and energetically efficient running at high speeds. Recent simulation studies indicate that having variable stiffness legs, as animals do, can significantly improve the speed and stability of these robots in changing environme...

متن کامل

A Neuromechanical Controller of a Hexapod Robot for Walking on Sponge, Gravel and Snow Surfaces

Physiological studies suggest that the integration of neural circuits and biomechanics (e.g., muscles) is a key for animals to achieve robust and efficient locomotion over challenging surfaces. Inspired by these studies, we present a neuromechanical controller of a hexapod robot for walking on soft elastic and loose surfaces. It consists of a modular neural network (MNN) and virtual agonist-ant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016